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Abstract 

The Smooth-Particle Applied Mechanics @PAM) model is a rel- 
atively recent physical modeling technique It can model both 
fluids and solids using free-moving particles An implemented 
SPAM model is described that solved the compressible Navier- 
Stokes equations to produce animations of splashing and paling 
water Because the particle positions are known explicitly each 
timestep, the SPAM technique produces data amenable to visual- 
ization A ray-tracing renderer is also described It samples the 
underwater light-Eeld distribution and stores tbe information into a 
Light Accumulation Lattice which is used for scattered light c&u- 
lations and caustics 

1 Introduction 

Practical water modeling has been a long time goal of the graphics 
community In the past, researchers have had to implement sin 
plified water models because of the lack of available CPU power to 
solve sophisticated physical models However, with the past growth 
in computing power, graphics researchers can now draw upon the 
past works of physicists to implement models with realistic looking 
behavior Coupled with advances in rendering techniques, today’s 
images are attaining unprecedented realism 

Both physically based and non-physically based water models 
have been developed in past graphics research Physically-based 
models are computer formulations of the mathematical descriptions 
of fluids, such as the oft-mentioned Navier-Stokes Equations found 
in Appendix B While the physics and mathematics are based on 
basic principles such as mass, momentum, and energy conserva- 
tion, the resulting equations describing the fluid motion can he dif- 
licult to understand both conceptually and mathematically Nomer- 
ical solvers of these equations must be crafted with care in order to 
avoid instabilities and to ensue accurate results It is the attempt 
to de-emphasize these issues, or to avoid them entirely, that leads 
some graphics researchers to use non-physically based models 

1.1 Non-Physically Based Models 

Reeves. [19J, described an early non-physically based model that 
employed vast numbers of tiny moving particles to suggest torbu- 
lent fluid movement Only external body forces such as gravity and 
repulsive boundaries influenced the motion of these particles ‘Ibe 
particles themselves could not interact with each other While this 
model was capable of generating good looking turbulent behavior, 
such as splashes and waterfalls, the model was unsuitable for mod- 
eling lakes and other bodies of water due to the particles’ inability 
to “support” each other 

Miller and Pearce [12] described a simple particle system that 
was used to animate viscous fluids Their system consisted of par- 
ticles that interacted with each other through simple repulsive and 
attractive forces which were functions of the distance separating 
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pairs of particles By adjusting the parameters of the interaction 
forces, ‘hey could vary the types of materials they were modeling 
The gamut of materials they could simulate ranged ftim “powders” 
to “fluids” to “solids” Their model, while producing good-looking 
highly-viscous substances, was not appropriate for modeling invis- 
cid fluids such as water 

Chiba [4] presented a ‘Quasi-physically-based” fluid model 
which attempted to capture the complex behavior of water Theirs 
was a particle method, like Reeves’s But, the motion of their par- 
ticles was governed by a set of heuristics which endeavored to ad- 
dress some of the shortcomings of Reeves’s method For example, 
the particles in Chiba’s model had volume, and were capable of 
interacting with each other based on a set of simple rules This 
allowed Chiba’s particles to collect and pool 

1 2 Physically Based Models 

There have also been several types of physically based water mod- 
els implemented in past graphics research One of the earlier mod- 
els, Max’s [ll], was simply a summation of sinusoidal waveforms 
of varying frequencies and amplitudes using the Stokes coefficients 
to model the deep-acean waves 

More recent techniques, such as Foumier [7] and Peachey [18], 
used trochoids to model the ocean surface It is useful and correct 
to describe the motion of particles of water throughout a deep water 
wave as an elliptical path whose orbit is a function of the depth of 
the water and the amplitude of the wave Using these facts, Foumier 
and Peachey generated images of waves rolling up to the beach 
In their images, one can watch the long smooth deep-ocean waves 
refract as they enter shallower water and grow choppier Because 
the waves themselves were just height Belds on a two dimension 
lattice, the waves could never truly fold over themselves as they 
crashed Foumier added a wind force to help “bend” the wave over, 
thus giving the appearance of a plunging wave 

Kass and Miller [9] implemented a finite difference scheme to 
solve a set of simplified shallow-water equations based upan a 20 
height-field Their model exhibited wave refraction and wave re- 
flectionoff boundaries However, because theirs was a height-field 
approach, it could not produce splashes or crashing waves 

Foster [6] implemented a 3D incompressible finite difference 
water simulation capable of capturing a variety of effects In or- 
der to render his images, however, Foster placed marker particles 
in various locations throughout the model and watched them advect 
according to tbe local velocities 

Another disadvantage of full-fledged three-dimensional simula- 
tians is the heavy toil on computer rexx,rces Chen et al [3] 
attempted to reduce this toll by computing the fluid flow in two 
dimensions only, but using the pressure to specify the height field 

This paper presents an alternative particle-based physical- 
modeling technique known as both Smoot&Particle Applied Me- 
chnnics @PAM) and Smoorh-Panicle ffydmdymics (SPH) [IO], 
[13],[14] [S] In this method particles are free to move about, and, 
because of this, it can capture the effects of splashing and pooling 
In addition to this, the position of each particle is known explicitly 
each timcstep, its data is amenable to visualization 



2 Water Modeling 

In discretiziug tlx continuum, oue must decide in which “frame- 
work” to work The Ix~grnn@z framework describes the motion 
of particles of mass in the continuum The Eulerian hamewwk 
describes the behavior of the fluid at soy fixed location in tbe mod- 
eling space If one were to place mobile S~~SOIS that backed the 
density, motion, and temperature of particle masses as they flowed 
through the modeling space, then one would be operating in the 
Lagrangian Framework The Eulerian framework can be likened to 
placing stationary sensors throughout the fluid that are capable of 
measuring the changes in densities, velocities and temperatures at 
fixed locations 

Because explicit knowledge of the fluid distribution throughout 
the system simplifies the rendering pmcess, Lagrangian models are 
well suited for visualization purposes 

2.1 Discretization Methods 

A variety of n,,merical methods are available to solve systems of 
partial differential equations (PDEs) such as the Navier-Stokes In 
schemes like Finite Difference Methods (FDM), Finite Element 
Methods (FEM), and Smooth-Particle Applied Mechanics(SPAM), 
state values such as density, thermal energy, velocity and mass, are 
stored in a collection of “nodes” which are distributed throughout 
the system These nodes represent either spatial locations or par- 
ticle masses The arrangement of nodes is guided by the need to 
quickly, and accurately, determine spatial derivatives 

Finite difference schemes, long popular for their simplicity, use 
structured grids, and are suited for the Eulerian framework Con- 
tinuous operations like spatial derivatives are replaced by taking 
weighted “differences” of values from neighboring nodes Al- 
though simple to implement, FDMs such as Foster’s, generate data 
whose surfaces are not amenable to visualization Furthermore, 
FDMs are ill-suited to handle problems with irregular domains 

Finite Element methods, which can be regarded as a superset 
of FDMs. offer much more flexibility in handling irregular geomc- 
ties because they are designed for unstructured meshes Weighted 
combinations of basis functions (which are localized) determine tbc 
state values at any given location Consequently, spatial derivatives 
are determined by a weighted sum of the basis function gradients 
Although very attnctive mathematically, FEMs are difficult to im 
plement FEMs also have particular difficulty with the Lagangian 
framework because of the possibility that edges might cross each 
other as nodes move about: this is known as “tangling” 

It is the sholtcomings of FDM and FEM that SPAM attempts to 
resolve In this method, state values ax derived from a weighted 
combination of neighboring intcrpalation points Spatial dcriva- 
tives axe similarly calculated using the weighting function Due to 
its free-form nature, the SPAM technique easily allows both Eule- 
rian and Lagrangian calculations to be performed In aLagrangian 
framework, the interpolation points represent particles of mass In 
an Eulerian framework, the interpolation points are just locations in 
the domain, as in FDMs 

2.2 SPAM Equations of Motion 

The SPAM modeling technique was first described by Lucy, [lo], 
and widely popularized by Monaghan [13], and [14] among others 
It has been employed to solve a wide variety of problems ranging 
from small scale fluid motion to calculation of astrophysical prob. 
lems (its first reported application) to the modeling of solids 

Both[l3] and [8] provide good descriptions and analyses of the 
SPAM technique For the sake of brevity, only a quick derivation is 
provided in Appcndii A 

A collection of particles, also called interpolation paints. make 
up the material of interest In a Lagrangian franc, these particles 
are free to move abut, while in an Eulerian scheme, they are fixed 
Ihe particles have mass, m. density p. internal energy, e, and velo+ 
ity, u 

Ihe Navier-Stokes equations of motion for a compressible fluid 
are written in the following SPAM formulation: 

The continuity equation describes the density change in a fluid 
For incompressible flaws such as water, Dp/Dt = 0 For compress- 
ible flows, the SPAM description for the change in density is 

g =p(ui-“j) VW, 

The momnfwn equation describes the accelerations that particles 
of mass undergo Accelerations are calculated by the follo,.+,,g 
Hpti0n: 

where g denotes the external gravity field 
The energy equation describes the change in internal energy 

(temperature) for a fluid It takes into account the effects of vis- 
cosity as well as the “work” done on the system in the form of 
compression and expansion For the models where temperature has 
a negligible effect on pressure, such as water models, this equa- 
tion cm often be ignored in order to save CPU cycles The SPAM 
description of energy change is as follows 

(3) 
where Q, in the above equation, is the heat-flux vector and is de- 
Gned by 

Qi s +VTi = -kxmj@+j (4) 
I 

G  is the temperature of particle i and pij is the symmetrized mean 
density as described in Appendix A 

The double dot-product notation, A : B, is defmed by Equation 
(23) 

The stress tensor 0 and heat flux vector Q, which are deiined 
by (21) and (ZZ), respectively, ale easily generated in the SPAM 
framework with the techniques already discussed in the appendix 

Equations (l), (Z), and (3) form a system of ordinary differential 
equations (ODES) that are relatively easy to evaluate The SPAM 
method’s ability to reduce the Navier-Stokes equations, which form 
a non-trivial set of PDEs, to an ODE system without any needs for 
grids or meshes makes it simple and easy to implement 

2 3 Weighting Functions 

It is widely recognized that the results of an SPAM calculation 
can vary depending on the weighting function used Hoover [8] 
presents a discussion of several weighting functions and results of 
their use For purposes of this paper, Lucy’s kernel was used 

W&h) = (1+3;)(1- ;)’ O<r<h (3 

2 4 SPAM Implementation 

Calculations of the time derivatives is a time consuming process 
involving three1 O(n’) traversals through a collection of n pati- 
cles me quadratic term is due to the worst case scenario when alI 



Figure I A “piston” comprised of repelling particles oscillates 
back and forth on a track to produce waves This simulation con- 
tained 2345 particles 

particle-pair interactions must be evaluated However, because WC 
used a weighting kernel with a finite width, we were able to divide 
the modeling regime into boxes where particles only interacted with 
particles in neighboring boxes This improves the running time &a- 
matically 

3 Simulation Results 

The following section discusses two simulations of water using the 
SPAM method 

3 1 Water Waves 

Figure 1 illustrates the evolution of a water wave The run was a 
20 simulation containing 2345 particles A repelling plane bound- 
ary sewed as the ocean floor to contain the particles; particles that 
strayed too close to the ocean floor were pushed up and away from 
the boundary ‘Ibe strength of the push was inversely proportional 
to the distance the particle was to the boundary The leftmost 
boundary served as the wave-maker It consisted of a vertical “col- 
umn” of repelling particles that oscillated on a track This motion 
induced the rolling waves which crested and plunged as they ap- 
proached the shore 

The particles were one kilogram in size and were initially a- 
ranged an a 0 1 by 0 1 meter lattice (which produced an aver- 
age initial density, p,,, of lW kg/mete&&is simulation was a 
2D calculation) The energy independent equation of state, P = 
B((p/po)’ - 1) was used This produces a fluid with a speed of 
sound, c, equal to c2 = JP/ap z 2B/p, The described simulations 
used a speed of sound approximately equal to 20 meters per second 
Thus, an incompressible fluid, such as water, was appmtiated by 
a slightly compressible fluid 

After the particles were placed in their initial configuration, the 
simulation was run with stationary boundaries This gave the puti- 
cles an opportunity to “relax” Once the initial motion had damped 
out, the oscillating wave-maker was put into motion 

and slrtin-rate tensors, and the beat Run vector Finally, the inter-part& 
forces are calculated during the last Pass 

3 2 Falling Column of Water 

The second simulation presented in this papa is that of a collaps- 
ing column of water A water column is placed inside a box and 
“&leased” It then proceeds to collapse and fill the box This was a 
purely three dimensional “water” simulation This simulation con- 
tained 2155 particles Due Lo the tw bulcnce of the simulation, the 
speed of sound for this simulation was approximately 30 meters per 
second The walls of the container were repelling plane boundaries, 
as in the wave-makn example Three frames of animation are il. 
lustrated in Figure 4 

4 Rendering 

In addition to producing water with realistic looking behavior,, we 
wanted render realistic looking images of the water A fully- 
recursive ray-tracer was implemented to capture the interaction be- 
tween light and water It was capable of modeling scattered light 
and caustics 

Because SPAM particles are really mars distributions which 
made the Metaball [I61 and “Blobby” [2] rendering methods 
seemed to be the obvious visualization technique to use However, 
m&ball rendering proved slow Instead, a Marching Cubes [5] al- 
gorithm was implemented Holes in the tessellation of the surface 
were eliminated by using Montmi’s [15] alternative “wmplemen- 
tary” triangulation scheme 

The SPAM definition of density is a convenient thresholding 
function to use; the tiesholding value can be somethiig fairly close 
to that of water (1000 kg/m3) Surface normals were found tbmugh 
a variation of Blinn’s bump-mapping algorithm [I] in that they were 
calculated by evaluating -VP on the facet surfaces This prcduces 
smoothly varying surface normals across coarsely faceted surfaces 
is popular because it results in excellent image quality with rela- 
tively low numbers of surface facets 

4.1 Illumination 

To produce realistic images of water such as caustic effects and 
light scattering. we needed to know the structure of the light field 
throughout the water Our algorithm is derived from the works of 
Watt [ZO] and Nishita [17] 

To calculate the amount of light scattered towards the viewer’s 
eye by the water, v/e must effectively solve the following equation 
for those viewing rays that pierce the water 

The term LAB describes the radiance accumulated along a ray seg- 
mentAB towards the eye through a transmitting medium where %  is 
the attenuation coefficient per unit length and p(x,o,aQ is the di- 
rectional volume scattering coefficient at point x fmm the direction 
0’ to the direction o E&w’) is the incident imadiance from the 
direction 0’ at point x Thus, according the (6), we need to know the 
underwater light-field distribution in order to calculate the amount 
of light scattered tnvard the eye 

To solve (6), we, like Watt and Nishita, fill OUT fluid volume 
with light volumes Our surface was tessellated using the Marching 
Cubes algorithm We then created light volumes by shooting rays 
from the light sources in the scene through every triangular facet on 
the surface We then created prism-like light volumes by refract- 
ing the light rays as they cmssed the MC surface and tracing them 
through as they transmit tbmugh the particle collection Ray tracing 
the light volumes explicitly to calculate the scattered Light and caw- 
tics proved time consuming and difficult, the sides are non-planar 
and light volumes .we potentially self-intersecting 



Sample Point / 

Figure 2 A viewing ray entering a Light Accumulation Lattice cell 
atpintA and exiting and point B 

Instead, the underwater light-field distribution was sampled on 
a uniform lattice into a datastiucturc called a LighI Accmulation 
Lonice (LAL) Inadiance vectors detailing the direction and the en- 
ergy per unit area flowing through the sample points were stored 
on the lattice’s nodes Because a sample point could lie in multi- 
ple light volumes, inadiance vectors were stored using lioked lists 
Thus, the light field anywhere in the volume can be trilinearly inter- 
polated fmm the sample points in the LAL Ambient light fmm the 
sky was stored as a downward pointing irradiaoce vector in all of 
the sample points that lay it, the water All bmdiance values were 
corrected for transmission attenuation and for expansion and com- 
pression of the light volume, the light grows “brighter” as the light 
is “focused” into a smaller area due to the increased energy density 
(irradiance) 

Equation (6) was solved approximately by making several sim 
plifying assumptions First, the radiance of the light scattered in the 
direction of the eye, LA and 4, was only evaluated when a viewing 
ray entered and exited the box formed by eight neighboring sample 
points as illustrated in Figure 2 Second. it was assumed that the 
radiance varied linearly between points A and B This gives us an 
approximation to (6) as follows: 

where D is the distance between points A and B 
Integrated analytically, (7) becomes: 

Caustics on submerged surfaces wew calculated from the sam- 
pled irradiance vectom Figure 3 illustrates the combination of 
light scattering and caustic effects on the bottom of a swimming 
pwl The water dataset contained 15912 particles arranged in a 
simple sinusoid pattern The final image contained 34798 March- 
ing Cube facets 10164 illumitntion volumes were processed into a 
63 by 63 by 63 LAL Preprocessing (extracting the isosurface and 
filling the LAL) took 757 seconds on a 266MHz PentiumII-based 
computer Rendering took only 941 seconds 

Figure 4 shows three frames on animations of a collapsing col- 
umn of water The animation contained 2755 particles of water 

r 

I 

5 Conclusion and Future Work 

The Smooth-Particle Applied Mechanics technique is a practical 
method for calculating fluid motion with free surface Rows The 
SPAM method easily allows one to turn a system of partial differ- 
ential equations into a set of ordinary differential equations The 
reduction does not require any grids which easily allows one to fol- 
low the motion of all of the particles in the system without worrying 
about mesh entanglement 

While the simulations described in this paper modeled water by 
approximating a compressible liquid, perhaps future workcould be 
directed to modeling purely incompressible flows Also, because 
computation time is pmpational to the number of particles in the 
system, it would be beneficial if one could develop a simulation 
where groups of slow moving particles could be “collapsed” into 
single large particles and vice versa 

The technique of stori?g the underwater light-field in the Light 
Accumulation Lattice leads to relatively quick renderings, but uses 
a great deal of memory and leaves less than satisfactory uodenuata 
caustics due to the interpolation If viewed from above the water, 
the distortion due to the reiraction effects lessens the effect 
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A SPAM Derivation 

Suppose the variable A represents a material’s generic property, 
such as density or temperature At an interpolation point j, this 
property has a V&X denoted by Aj The hydrodynamic value of 
A(r) at my pint r in space is calculated from a smoothed aver- 
age of the values Aj corresponding to interpolation points j in the 
local area The smwthed-averaging process is accomplished by 
a weighting function, W(r, b) The parameter h characterizes the 
“width” of in!Iuence of W This weighting function has two key 
properties [l3]: 

and 

where S(r) is the delta function 
‘Ibe property A(r) at any point r, is defined by 

A(r) = /A(r’)G(r -r’)dr’ 
” 

(11) 

If we use the weighting function W(r,h) as an approximation to 
S(r) and we then disaetize the continuum into small ‘%huoks” of 
mass, we obtain the following SPAh4 definition: 

A(r)= ~Aj+‘(r-rj,h) 
j=t P/ 

w 

A.1 Spatial Derivatives 

The SPAM technique offers a simple and elegant method for calcu- 
lating spatial derivatives To find the derivative along the x direc- 
tion, we differentiate (12) and obtain 

(13) 



Because W(r,k) is the only tam that depends on 1 we get the fol- 
lowing SPAM gradient definition: 

VA(r) sxAj$VW(r-rj,k) 
I 

(14) 

Often it is desbahle to write formulations in symmetric forms 
This is easily done in the SPAM framework First, we expand the 
gradient V(pA) using the chain role, and rearrange to obtain 

pVA=V(pA)-AVp (1% 

The expansion of (15) in SPAM notation then produces Hoover’s 
[S] alternate form of the gradient evaluated at a particle location i, 

VAi = &j---- @j -4) VW, 

I Pij 
(16) 

where Wjj is shorthand notation for W(ri - rj, h) and the term ptj is 
either the arithmetic or geometric mean of the densities of particles 
iandj 

Tbe density calculation in SPAM can be performed in primarily 
two ways Tbe first is to use the SPAM derlnition of density with 
p substituted for A in (12) This definition leads to the following 
formulation for density for particle i: 

pi = CmjWij (17) 
i 

Unfortunately, (17) can lead to problems in the calculation of 
free surface Rows because it leads to lower-than-standard densities 
at the free surface This creates large pressure gradients at the sw- 
face causing particles to “bail” away due to a lack of a restoring 
atmospheric pressure at the free surface This can be remedied with 
the addition of a surface-tension force to keep particles from escap- 
ing Altcmatively, one can assign each particle an initial density p0 
and then integrate the continuity equation (18) like any other field 
variable with formulation 1 This was the approach used in this 
work 

B The Equations of Motion 

The general field equations is a set of partial differential equations 
that describe the conservation laws for mass, momentum, and en- 
ergy From that set, the Navier-Stokes equstions for fluid mechanics 
are derived by making the following assumptions about the fluid: it 
satisfies the Fourier Law of Heat Conduction; it is Newtonian: and 
it satisfies the Stokes relation 

In computer graphics, and certainly in modeling unsteady flows, 
it is convenient to follow the motion of particles in a continuum 
Therefore it is only natural that we take a Lagrangian view of our 
system In the Lagrangian framework, the compressible Navier- 
Stokes equations ax 

1DP 
p‘ijT = 

-v u (W 

DU 
Pz = v o+pg (19) 

De 
pE = c~:Vu-V Q (20) 

where p is density, u is velocity, g is the external gravity field, and 
e is internal energy 

‘Ik stress tensor ci is defined by 

2 
Gij =-(P+;@ U)Sij+2pEij (21) 

where P is pressure, /1 is the viscosity coefficient, n is spatial di- 
mension, and ‘ij is the srrair& rufe tensor which has the form 

Eij=+ ($$+$f) 
The heat flux vector Q  is given by 

Q  z -xVT, (22) 

where K is fhe coefficient of beat conduction in Fourier’s Law Tem- 
perature is a function of internal energy, T = e/c, for an ideal gas 
where cv is the specific heat at constant volume 

Tbe A : B (double dot-product) notation stands for tbe double 
contraction of tensors to produce a scalar term: 

A : B = xxA;jBji 
i j 
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